# Package: MVQuickGraphs (via r-universe)

November 7, 2024

Type Package

Title Quick Multivariate Graphs

Version 0.1.6

Date 2021-06-23

**Description** Functions used for graphing in multivariate contexts. These functions are designed to support produce reasonable graphs with minimal input of graphing parameters. The motivation for these functions was to support students learning multivariate concepts and R - there may be other functions and packages better-suited to practical data analysis. For details about the ellipse methods see Johnson and Wichern (2007, ISBN:9780131877153).

License GPL-2 | GPL-3

**Encoding** UTF-8

Imports stats, graphics, plotrix, corrplot

Suggests psych

RoxygenNote 7.1.1

Repository https://douglaswhitaker.r-universe.dev

RemoteUrl https://github.com/douglaswhitaker/mvquickgraphs

RemoteRef HEAD

RemoteSha 68f612f445f2a6abfcd10c2d860db7e0c938c127

# Contents

| bvNormalContour    |  |
|--------------------|--|
| confidenceEllipse  |  |
| eigenEllipseHelper |  |
| make_all_rects     |  |
| make_rect          |  |
| plot4in1           |  |
|                    |  |

10

Index

bvNormalContour

# Description

Draws a contour of constant density at the (1-alpha)100% level for a bivariate normal distribution using the eigendecomposition of the covariance matrix. This is likely more interesting for learning about the bivariate normal distribution than as a practical tool, for which other functions already exist (e.g. link[graphics]{contour}).

# Usage

```
bvNormalContour(
  mu = c(0, 0),
  Sigma = NULL,
  eig = NULL,
  xl = NULL,
  yl = NULL,
  axes = TRUE,
  center = FALSE,
  lim.adj = 0.02,
  alpha = 0.05,
  ....
)
```

# Arguments

| mu     | a vector giving the mean of the bivariate normal distribution. This is the center of the ellipse.                                                                                                                                                                          |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sigma  | a matrix giving the covariance matrix of the bivariate normal distribution. Either Sigma or eig must be specified.                                                                                                                                                         |
| eig    | the eigenvalues and eigenvectors of the covariance matrix. This should be of the same form as the output of eigen, namely a list with two components: values and vectors. It is assumed that the largest eigenvalue is given first. Either Sigma or eig must be specified. |
| xl     | a vector giving the lower and upper limits of the x-axis for plotting. If $x1 = NULL$ (default), then reasonable values are computed automatically.                                                                                                                        |
| yl     | a vector giving the lower and upper limits of the y-axis for plotting. If $y1 = NULL$ (default), then reasonable values are computed automatically.                                                                                                                        |
| axes   | logical. If axes = TRUE (default) then the major and minor axes of the ellipse are plotted.                                                                                                                                                                                |
| center | logical. If axes = TRUE then the center of the ellipse is indicated with a point and dashed lines are drawn to the x-axis and y-axis.                                                                                                                                      |

| lim.adj | a value giving an adjustment to the x-axis and y-axis limits computed if either                                                                               |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | x1 = NULL or $y1 = NULL$ . Essentially this is a way to have some coarse control                                                                              |
|         | over these limits for quick graphing: positive values will increase the distance                                                                              |
|         | between the upper and lower limits (making the ellipse appear smaller) while negative values will decrease the distance (and make the ellipse appear larger). |
| alpha   | a value giving the value of alpha to be used when computing the contour. Con-<br>tours are drawn at the 1-alpha level.                                        |
|         | other arguments to be passed to the graphing functions.                                                                                                       |

# Value

None

#### References

Johnson, R. A., & Wichern, D. W. (2007). Applied multivariate statistical analysis (6th ed). Pearson Prentice Hall.

#### Examples

```
mu <- c(-1,8)
Sigma <- matrix(c(3,2,2,4), ncol = 2)
# Draw a 90% contour
bvNormalContour(mu = mu, Sigma = Sigma, alpha = 0.10)</pre>
```

confidenceEllipse Bivariate Normal Confidence Ellipse

# Description

Draws a (1-alpha)100% confidence ellipse (two dimensional) for a multivariate normal distribution using the eigendecomposition of the covariance matrix.

#### Usage

```
confidenceEllipse(
   X.mean = c(0, 0),
   eig,
   n,
   p,
   xl = NULL,
   yl = NULL,
   axes = TRUE,
   center = FALSE,
   lim.adj = 0.02,
   alpha = 0.05,
   ...
)
```

# Arguments

| X.mean  | a column matrix giving the mean of the two dimensions of the p-dimensional multivariate normal distribution.                                                                                                                                                                                                                                                                                                      |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| eig     | the eigenvalues and eigenvectors of the covariance matrix. This should be of the same form as the output of eigen, namely a list with two components: values and vectors. It is assumed that the largest eigenvalue is given first.                                                                                                                                                                               |
| n       | the number of observations.                                                                                                                                                                                                                                                                                                                                                                                       |
| р       | the number of dimensions of the multivariate normal distribution. (The resulting graph will always be a two-dimensional confidence region for the two dimensions of a p-dimensional multivariate normal distribution under consideration.)                                                                                                                                                                        |
| xl      | a vector giving the lower and upper limits of the x-axis for plotting. If $x1 = NULL$ (default), then reasonable values are computed automatically.                                                                                                                                                                                                                                                               |
| yl      | a vector giving the lower and upper limits of the y-axis for plotting. If $y1 = NULL$ (default), then reasonable values are computed automatically.                                                                                                                                                                                                                                                               |
| axes    | logical. If axes = TRUE (default) then the major and minor axes of the ellipse are plotted.                                                                                                                                                                                                                                                                                                                       |
| center  | logical. If $axes = TRUE$ then the center of the ellipse is indicated with a point and dashed lines are drawn to the x-axis and y-axis.                                                                                                                                                                                                                                                                           |
| lim.adj | a value giving an adjustment to the x-axis and y-axis limits computed if either $x1 = NULL$ or $y1 = NULL$ . Essentially this is a way to have some coarse control over these limits for quick graphing: positive values will increase the distance between the upper and lower limits (making the ellipse appear smaller) while negative values will decrease the distance (and make the ellipse appear larger). |
| alpha   | a value giving the value of alpha to be used when computing the contour. Contours are drawn at the 1-alpha level.                                                                                                                                                                                                                                                                                                 |
|         | other arguments to be passed to the graphing functions.                                                                                                                                                                                                                                                                                                                                                           |

# Value

None

#### References

Johnson, R. A., & Wichern, D. W. (2007). Applied multivariate statistical analysis (6th ed). Pearson Prentice Hall.

# Examples

eigenEllipseHelper Helper Function for other Ellipse-from-Eigendecomposition Functions

# Description

Helper function for graphing ellipses from eigendecompositions. This function is used by bvNormalContour and confidenceEllipse. Essentially this is a wrapper for draw.ellipse that also calculates appropriate x-axis and y-axis limits to make graphing an ellipse easier (because the entire ellipse should be visible without any work on the user's part to specify the limits).

# Usage

eigenEllipseHelper(mu, lengths, angle, xl, yl, lim.adj, axes, center, ...)

# Arguments

| mu      | column matrix giving the coordinates for the cener of the ellipse.                                                                    |
|---------|---------------------------------------------------------------------------------------------------------------------------------------|
| lengths | vector giving the major and minor axis lengths.                                                                                       |
| angle   | angle of rotation (in radians).                                                                                                       |
| xl      | x-axis limits. If $x1 = NULL$ then these are computed automatically.                                                                  |
| yl      | y-axis limits. If y1 = NULL then these are computed automatically.                                                                    |
| lim.adj | a value giving an adjustment to the x-axis and y-axis limits computed if either $x1 = NULL$ or $y1 = NULL$ .                          |
| axes    | logical. If axes = TRUE, then the major and minor axes are graphed.                                                                   |
| center  | logical. If axes = TRUE then the center of the ellipse is indicated with a point and dashed lines are drawn to the x-axis and y-axis. |
|         | other arguments to be passed to the graphing functions.                                                                               |

#### Value

None

make\_all\_rects

Allows the creation of all rectangles on a correlation plot using a vector of cutpoints to divide them.

# Description

Allows the creation of all rectangles on a correlation plot using a vector of cutpoints to divide them.

# Usage

```
make_all_rects(
   cutpoints,
   endpoint,
   ondiag = TRUE,
   offdiag = TRUE,
   col_ondiag = "black",
   col_offdiag = "red",
   ondiag_width = 4,
   offdiag_width = 3,
   correlation_matrix,
   ...
)
```

# Arguments

| cutpoints          | A vector containing the names of the cutpoints (i.e names of variables contained<br>in the correlation plot). The first cutpoint is the variable that will start off the<br>first rectangle. The second cutpoint then defines the starting point of the second<br>rectangle, and so on. |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| endpoint           | The name of the variable contained in the correlation plot that will define the end of the last rectangle to be made.                                                                                                                                                                   |
| ondiag             | Defaults to TRUE. If TRUE, the function will generate the associated on-diagonal rectangles.                                                                                                                                                                                            |
| offdiag            | Defaults to TRUE. If FALSE, the function will generate the associated off-<br>diagonal rectangles.                                                                                                                                                                                      |
| col_ondiag         | Defines the colour of on-diagonal rectangles.                                                                                                                                                                                                                                           |
| col_offdiag        | Defines the colour of off-diagonal rectangles.                                                                                                                                                                                                                                          |
| ondiag_width       | Defines the line width of the on-diagonal rectangles.                                                                                                                                                                                                                                   |
| offdiag_width      | Defines the line width of the off-diagonal rectangles.                                                                                                                                                                                                                                  |
| correlation_matrix |                                                                                                                                                                                                                                                                                         |
|                    | The correlation matrix the correlation plot is based on.                                                                                                                                                                                                                                |
|                    | Arguments to modify graphical parameters, etc.                                                                                                                                                                                                                                          |

# make\_rect

#### Examples

```
#Adds all rectangles associated with the cutpoints to the correlation plot of
#the Bechtoldt sample correlation matrix (provided by the psych package).
library(psych)
corrplot::corrplot(Bechtoldt)
make_all_rects(cutpoints=c("First_Names", "Vocabulary", "Suffixes"), endpoint
="Three_Higher", correlation_matrix=Bechtoldt)
#Adds all on-diagonal rectangles associated with the cutpoints.
```

```
make_all_rects(cutpoints=c("First_Names", "Vocabulary", "Suffixes"), endpoint
="Three_Higher", offdiag=FALSE, correlation_matrix=Bechtoldt)
```

make\_rect

#### Add a rectangle to a correlation plot

#### Description

Add a rectangle to a correlation plot

# Usage

```
make_rect(
  rstart,
  rend,
  cstart = NULL,
  cend = NULL,
  correlation_matrix,
  mirror = FALSE,
  lwd = 3,
  ...
)
```

# Arguments

| rstart | The name of the variable contained in the correlation plot that will serve as the vertical starting point of the rectangle.                                                                                                                                                            |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| rend   | The name of the variable contained in the correlation plot that will serve as the vertical ending point of the rectangle.                                                                                                                                                              |
| cstart | (optional) The name of the variable contained in the correlation plot that will<br>serve as the horizontal starting point of the rectangle. If no cstart or cend pro-<br>vided, creates an on-diagonal rectangle automatically. cstart and cend allows for<br>off-diagonal rectangles. |
| cend   | (optional) The name of the variable contained in the correlation plot that will<br>serve as the horizontal ending point of the rectangle. If no cstart or cend pro-<br>vided, creates an on-diagonal rectangle automatically. cstart and cend allows for<br>off-diagonal rectangles.   |

| correlation_matrix |                                                                                                                                                                                                                             |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | The correlation matrix the correlation plot is based on.                                                                                                                                                                    |
| mirror             | If TRUE, also adds the equivalent rectangle from the other side of the diago-<br>nal (i.e. the "mirror" of the original). The function ignores this entirely if the<br>rectangle is on the diagonal, as there is no mirror. |
| lwd                | Determines the width of the rectangle lines.                                                                                                                                                                                |
|                    | Arguments to modify graphical parameters, etc.                                                                                                                                                                              |

#### Examples

```
#Adding an on-diagonal rectangle to a correlation plot with mirroring, using
#the Bechtoldt sample correlation matrix provided by the psych package.
library(corrplot)
library(psych)
corrplot(Bechtoldt)
make_rect(rstart="First_Names", rend="Flags", correlation_matrix=Bechtoldt, mirror=TRUE)
#Adding an off-diagonal rectangle
make_rect(rstart="First_Names", rend="Flags", cstart="First_Names",
```

```
cend="Sentences", correlation_matrix=Bechtoldt)
```

plot4in1

Plot 4-in-1

#### Description

Generates a 2x2 panel graph including four residual diagnostic plots as is popular in some other statistics packages. This was initially written to support students learning R for the first time in a regression modeling course. plot4in1 generates four commonly-used residual diagnostic plots that can be used to assess the linear regression assumptions and ensures a consistent, reasonably-pleasing graphical style across each plot.

# Usage

```
plot4in1(
  out,
  type = "Regular",
  PP = TRUE,
  pch = 19,
  col = "steelblue",
  cex = 1.2,
  ...
)
```

# plot4in1

#### Arguments

| out  | the output of the lm function (an object of class "lm"). The components of great-<br>est importance from this object are residuals (perhaps passed to rstandard<br>of rstudent, depending on type) and fitted.values.                                                                                                                                                          |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| type | the type of residuals to be used. There are three possible values: "Regular",<br>"Standardized", and "Studentized". Using type = "Regular" results in un-<br>transformed residuals being used, type = "Standardized" uses standardized<br>residuals (computed using rstandard), and type = "Studentized" uses exter-<br>nally studentized residuals (computed using rstudent). |
| PP   | logical. If PP = TRUE, a Normal Percentile Plot (P-P Plot) is displayed in the top-left panel. If PP = FALSE, a Normal Quantile Plot (Q-Q Plot) is displayed in the top-left panel.                                                                                                                                                                                            |
| pch  | symbol to be used in plotting. pch = 19 is a filled circle (see par).                                                                                                                                                                                                                                                                                                          |
| col  | color of symbol specified in pch to be used in graphing. The default is "steelblue" (see par).                                                                                                                                                                                                                                                                                 |
| cex  | character expansion value, used to adjust the size of the symbol specified in pch.<br>The default value is cex = 1.2 (see par).                                                                                                                                                                                                                                                |
|      | other arguments to be passed to the graphing functions.                                                                                                                                                                                                                                                                                                                        |

# Details

plot4in1 creates a 2 by 2 panel using par(mfrow = c(2,2)) and then generates four residual diagnostic plots: a Percentile-Percentile (or Quantile-Quantile plot if PP = FALSE), a scatterplot of the fitted.values against the residuals, a histogram of the residuals, and scatterplot of the residuals against their order, overplotted.

#### Value

None

# See Also

influence.measures for more information about standardized (rstandard) and studentized (rstudent) residuals; qqnorm for more information about the Quantile-Quanitle (Q-Q) plot; par for information about the graphical parameters.

# Examples

out <- lm(Girth ~ Volume, data = trees)
plot4in1(out)</pre>

# Index

bvNormalContour, 2, 5
confidenceEllipse, 3, 5
draw.ellipse, 5
eigen, 2, 4
eigenEllipseHelper, 5
influence.measures, 9
lm, 9
make\_all\_rects, 6
make\_rect, 7
par, 9

plot4in1,<mark>8</mark>

qqnorm, 9